A Comparative Analysis of Machine Learning Models in Prediction of Mortar Compressive Strength
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F22%3A10250061" target="_blank" >RIV/61989100:27230/22:10250061 - isvavai.cz</a>
Result on the web
<a href="https://www.webofscience.com/wos/woscc/full-record/WOS:000831902300001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:000831902300001</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/pr10071387" target="_blank" >10.3390/pr10071387</a>
Alternative languages
Result language
angličtina
Original language name
A Comparative Analysis of Machine Learning Models in Prediction of Mortar Compressive Strength
Original language description
Predicting the mechanical properties of cement-based mortars is essential in understanding the life and functioning of structures. Machine learning (ML) algorithms in this regard can be especially useful in prediction scenarios. In this paper, a comprehensive comparison of nine ML algorithms, i.e., linear regression (LR), random forest regression (RFR), support vector regression (SVR), AdaBoost regression (ABR), multi-layer perceptron (MLP), gradient boosting regression (GBR), decision tree regression (DT), hist gradient boosting regression (hGBR) and XGBoost regression (XGB), is carried out. A multi-attribute decision making method called TOPSIS (technique for order of preference by similarity to ideal solution) is used to select the best ML metamodel. A large dataset on cement-based mortars consisting of 424 sample points is used. The compressive strength of cement-based mortars is predicted based on six input parameters, i.e., the age of specimen (AS), the cement grade (CG), the metakaolin-to-total-binder ratio (MK/B), the water-to-binder ratio (W/B), the superplasticizer-to-binder ratio (SP) and the binder-to-sand ratio (B/S). XGBoost regression is found to be the best ML metamodel while simple metamodels like linear regression (LR) are found to be insufficient in handling the non-linearity in the process. This mapping of the compressive strength of mortars using ML techniques will be helpful for practitioners and researchers in identifying suitable mortar mixes.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20300 - Mechanical engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Processes
ISSN
2227-9717
e-ISSN
2227-9717
Volume of the periodical
10
Issue of the periodical within the volume
7
Country of publishing house
CH - SWITZERLAND
Number of pages
16
Pages from-to
nestrankovano
UT code for WoS article
000831902300001
EID of the result in the Scopus database
—