All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Leakage Characteristics of Proportional Directional Valve

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F23%3A10252039" target="_blank" >RIV/61989100:27230/23:10252039 - isvavai.cz</a>

  • Result on the web

    <a href="http://file:///C:/Users/boj01/Downloads/processes-11-00512.pdf" target="_blank" >http://file:///C:/Users/boj01/Downloads/processes-11-00512.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/pr11020512" target="_blank" >10.3390/pr11020512</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Leakage Characteristics of Proportional Directional Valve

  • Original language description

    This paper deals with the analysis of leakage characteristics of the proportional directional valve. These characteristics distinguish a real directional valve from an ideal one. The ideal directional valve is characterized by zero leakage due to its perfect geometry. The investigated element is the three-position four-way proportional directional valve with zero spool lap and feedback from the spool position. The spool position is measured by the inductive position sensor and processed by external electronics. Internal leakage occurs due to axial and radial clearances between the spool and the sleeve. The magnitude of axial clearances that occur at throttle edges and their effect on the directional valve leakage is the subject of research. The blocked-line pressure sensitivity curve, the leakage flow curve and the center flow curve are determined by experiment. Individual characteristics are determined for different working fluid temperatures and different supply pressures. The flow through internal leaks in the center position of the valve spool is determined by analytical calculations. The flow through internal leaks is also simulated using the Ansys Fluent software. Subsequently, the geometry of the flow simulation model is modified to take into account manufacturing tolerances. From simulation results, the effect of the manufacturing tolerance magnitude on the internal leakage of the directional valve is evaluated. Finally, simulated dependencies are compared with experimentally determined characteristics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20301 - Mechanical engineering

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Research Centre of Advanced Mechatronic Systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Processes

  • ISSN

    2227-9717

  • e-ISSN

    2227-9717

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

    1-13

  • UT code for WoS article

    000940543400001

  • EID of the result in the Scopus database

    2-s2.0-85149148078