All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hand Gesture Interface for Robot Path Definition in Collaborative Applications: Implementation and Comparative Study

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F23%3A10252328" target="_blank" >RIV/61989100:27230/23:10252328 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1424-8220/23/9/4219" target="_blank" >https://www.mdpi.com/1424-8220/23/9/4219</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/s23094219" target="_blank" >10.3390/s23094219</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hand Gesture Interface for Robot Path Definition in Collaborative Applications: Implementation and Comparative Study

  • Original language description

    The article explores the possibilities of using hand gestures as a control interface for robotic systems in a collaborative workspace. The development of hand gesture control interfaces has become increasingly important in everyday life as well as professional contexts such as manufacturing processes. We present a system designed to facilitate collaboration between humans and robots in manufacturing processes that require frequent revisions of the robot path and that allows direct definition of the waypoints, which differentiates our system from the existing ones. We introduce a novel and intuitive approach to human-robot cooperation through the use of simple gestures. As part of a robotic workspace, a proposed interface was developed and implemented utilising three RGB-D sensors for monitoring the operator&apos;s hand movements within the workspace. The system employs distributed data processing through multiple Jetson Nano units, with each unit processing data from a single camera. MediaPipe solution is utilised to localise the hand landmarks in the RGB image, enabling gesture recognition. We compare the conventional methods of defining robot trajectories with their developed gesture-based system through an experiment with 20 volunteers. The experiment involved verification of the system under realistic conditions in a real workspace closely resembling the intended industrial application. Data collected during the experiment included both objective and subjective parameters. The results indicate that the gesture-based interface enables users to define a given path objectively faster than conventional methods. We critically analyse the features and limitations of the developed system and suggest directions for future research. Overall, the experimental results indicate the usefulness of the developed system as it can speed up the definition of the robot&apos;s path.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20204 - Robotics and automatic control

Result continuities

  • Project

    <a href="/en/project/EF17_049%2F0008425" target="_blank" >EF17_049/0008425: A Research Platform focused on Industry 4.0 and Robotics in Ostrava Agglomeration</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Sensors

  • ISSN

    1424-3210

  • e-ISSN

    1424-8220

  • Volume of the periodical

    23

  • Issue of the periodical within the volume

    9

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    21

  • Pages from-to

    "@@@###"

  • UT code for WoS article

    000987781900001

  • EID of the result in the Scopus database

    2-s2.0-85159281770