All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Influence of Deposition Time on Titanium Nitride (TiN) Thin Film Coating Synthesis Using Chemical Vapour Deposition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F23%3A10252699" target="_blank" >RIV/61989100:27230/23:10252699 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.webofscience.com/wos/woscc/full-record/WOS:001032293700001" target="_blank" >https://www.webofscience.com/wos/woscc/full-record/WOS:001032293700001</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ma16134611" target="_blank" >10.3390/ma16134611</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Influence of Deposition Time on Titanium Nitride (TiN) Thin Film Coating Synthesis Using Chemical Vapour Deposition

  • Original language description

    Titanium nitride (TiN) thin film coatings were grown over silicon (p-type) substrate using the atmospheric pressure chemical vapour deposition (APCVD) technique. The synthesis process was carried out to evaluate the effect of deposition time on the physical and mechanical characteristics of TiN coating. Thin films grown over Si substrate were further characterised to evaluate the morphological properties, surface roughness and mechanical properties using a scanning electrode microscope (SEM), atomic force microscopy (AFM) and nanoindentation, respectively. EDS equipped with SEM showed the presence of Ti and N elements in considerable amounts. TiN morphology obtained from the SEM test showed small-sized particles on the surface along with cracks and pores. AFM results revealed that by increasing the deposition time, the surface roughness of the coating also increased. The nanomechanical properties such as nanohardness (H) and Young&apos;s modulus (E), etc., evaluated using the nanoindentation technique showed that higher deposition time led to an increase in H and E. Overall, it was observed that deposition time plays a vital role in the TiN coating deposition using the CVD technique.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20300 - Mechanical engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials

  • ISSN

    1996-1944

  • e-ISSN

  • Volume of the periodical

    16

  • Issue of the periodical within the volume

    13

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

  • UT code for WoS article

    001032293700001

  • EID of the result in the Scopus database