Enhanced Dual-Selection Krill Herd Strategy for Optimizing Network Lifetime and Stability in Wireless Sensor Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F23%3A10252903" target="_blank" >RIV/61989100:27230/23:10252903 - isvavai.cz</a>
Result on the web
<a href="https://www.mdpi.com/1424-8220/23/17/7485" target="_blank" >https://www.mdpi.com/1424-8220/23/17/7485</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/s23177485" target="_blank" >10.3390/s23177485</a>
Alternative languages
Result language
angličtina
Original language name
Enhanced Dual-Selection Krill Herd Strategy for Optimizing Network Lifetime and Stability in Wireless Sensor Networks
Original language description
Wireless sensor networks (WSNs) enable communication among sensor nodes and require efficient energy management for optimal operation under various conditions. Key challenges include maximizing network lifetime, coverage area, and effective data aggregation and planning. A longer network lifetime contributes to improved data transfer durability, sensor conservation, and scalability. In this paper, an enhanced dual-selection krill herd (KH) optimization clustering scheme for resource-efficient WSNs with minimal overhead is introduced. The proposed approach increases overall energy utilization and reduces inter-node communication, addressing energy conservation challenges in node deployment and clustering for WSNs as optimization problems. A dynamic layering mechanism is employed to prevent repetitive selection of the same cluster head nodes, ensuring effective dual selection. Our algorithm is designed to identify the optimal solution through enhanced exploitation and exploration processes, leveraging a modified krill-based clustering method. Comparative analysis with benchmark approaches demonstrates that the proposed model enhances network lifetime by 23.21%, increases stable energy by 19.84%, and reduces network latency by 22.88%, offering a more efficient and reliable solution for WSN energy management.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20301 - Mechanical engineering
Result continuities
Project
<a href="/en/project/EF16_019%2F0000867" target="_blank" >EF16_019/0000867: Research Centre of Advanced Mechatronic Systems</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Sensors
ISSN
1424-3210
e-ISSN
1424-8220
Volume of the periodical
23
Issue of the periodical within the volume
17
Country of publishing house
CH - SWITZERLAND
Number of pages
25
Pages from-to
—
UT code for WoS article
001062732800001
EID of the result in the Scopus database
2-s2.0-85170352877