All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multi Swarm Optimization Based Clustering with Tabu Search in Wireless Sensor Network

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27230%2F22%3A10249658" target="_blank" >RIV/61989100:27230/22:10249658 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1424-8220/22/5/1736" target="_blank" >https://www.mdpi.com/1424-8220/22/5/1736</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/s22051736" target="_blank" >10.3390/s22051736</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multi Swarm Optimization Based Clustering with Tabu Search in Wireless Sensor Network

  • Original language description

    Wireless Sensor Networks (WSNs) can be defined as a cluster of sensors with a restricted power supply deployed in a specific area to gather environmental data. One of the most challenging areas of research is to design energy-efficient data gathering algorithms in large-scale WSNs, as each sensor node, in general, has limited energy resources. Literature review shows that with regards to energy saving, clustering-based techniques for data gathering are quite effective. Moreover, cluster head (CH) optimization is a non-deterministic polynomial (NP) hard problem. Both the lifespan of the network and its energy efficiency are improved by choosing the optimal path in routing. The technique put forth in this paper is based on multi swarm optimization (MSO) (i.e., multi-PSO) together with Tabu search (TS) techniques. Efficient CHs are chosen by the proposed system, which increases the optimization of routing and life of the network. The obtained results show that the MSO-Tabu approach has a 14%, 5%, 11%, and 4% higher number of clusters and a 20%, 6%, 14%, and 6% lesser average packet loss rate as compared to a genetic algorithm (GA), differential evolution (DE), Tabu, and MSO based clustering, respectively. Moreover, the MSO-Tabu approach has 136%, 36%, 136%, and 38% higher lifetime computation, and 22%, 16%, 51%, and 12% higher average dissipated energy. Thus, the study&apos;s outcome shows that the proposed MSO-Tabu is efficient, as it enhances the number of clusters formed, average energy dissipated, lifetime computation, and there is a decrease in mean packet loss and end-to-end delay.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20301 - Mechanical engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Sensors

  • ISSN

    1424-3210

  • e-ISSN

    1424-8220

  • Volume of the periodical

    22

  • Issue of the periodical within the volume

    5

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    13

  • Pages from-to

    nestrankovano

  • UT code for WoS article

    000768187100001

  • EID of the result in the Scopus database

    2-s2.0-85125058298