All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Genetic Algorithm with Heuristic Mutation for Wireless Sensor Network Optimization

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F23%3A10254721" target="_blank" >RIV/61989100:27240/23:10254721 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-40971-4_17" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-40971-4_17</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-40971-4_17" target="_blank" >10.1007/978-3-031-40971-4_17</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Genetic Algorithm with Heuristic Mutation for Wireless Sensor Network Optimization

  • Original language description

    Bio-inspired metaheuristics can be useful for the optimization of complex systems. Wireless sensor networks (WSNs) are massively distributed cyber-physical systems whose efficient operation requires appropriate design and control strategies. In certain contexts, like with randomly deployed WSNs, the physical network configuration can be affected only minimally, and optimal control strategies are crucial for optimizing network performance metrics like lifetime, coverage, and energy consumption. These metrics often conflict with each other, making network optimization a complex multi-objective problem. In this study, we introduce an improved version of a bi-objective genetic algorithm for the optimization of sensor network lifetime and target coverage. The new algorithm uses the generic evolutionary optimization framework together with a problem-specific heuristic mutation operator. We investigate the ability of the algorithm to find sensor schedules that extend network lifetime, and improve average target coverage while satisfying the minimum coverage requirement and show that the improved algorithm delivers better schedules than the original GA.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/GF22-34873K" target="_blank" >GF22-34873K: Constrained Multiobjective Optimization Based on Problem Landscape Analysis</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes on Data Engineering and Communications Technologies. Volume 182

  • ISBN

    978-3-031-40970-7

  • ISSN

    2367-4512

  • e-ISSN

    2367-4520

  • Number of pages

    13

  • Pages from-to

    177-189

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Čiang Mai

  • Event date

    Sep 6, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article