All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A Bi-objective Genetic Algorithm for Wireless Sensor Network Optimization

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10252184" target="_blank" >RIV/61989100:27240/22:10252184 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-031-08812-4_15" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-08812-4_15</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-08812-4_15" target="_blank" >10.1007/978-3-031-08812-4_15</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A Bi-objective Genetic Algorithm for Wireless Sensor Network Optimization

  • Original language description

    When designing a wireless sensor network several performance metrics should be considered, e.g., network lifetime, target coverage, sensor energy consumption. As a rule, these metrics are in conflict with each other, which means that by optimizing some of them we worsen the others. Designing the network is therefore a problem of multi-objective optimization. In this work, we propose a bi-objective genetic algorithm that optimizes network lifetime and target coverage. We consider two variants of the algorithm, in which the fitness function comprises only the network lifetime, or where it includes both, the network lifetime and target coverage. This makes it possible to find a trade-off between these two objectives. In-depth experimental studies are carried out for both variants of the algorithm. (C) 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10200 - Computer and information sciences

Result continuities

  • Project

    <a href="/en/project/LTAIN19176" target="_blank" >LTAIN19176: Metaheuristics Framework for Multi-objective Combinatorial Optimization Problems (META MO-COP)</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Networks and Systems. Volume 497

  • ISBN

    978-3-031-08811-7

  • ISSN

    2367-3370

  • e-ISSN

    2367-3389

  • Number of pages

    13

  • Pages from-to

    147-159

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Kitakjúšú

  • Event date

    Jun 29, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article