All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Imbalance in tournament designs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F01%3A00000928" target="_blank" >RIV/61989100:27240/01:00000928 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Imbalance in tournament designs

  • Original language description

    A tournament design (TD) is a quadruple $(V,F,P,alpha)$ where $V$ is a $2n$-element set whose elements are teams, $F={F_1,F_2,dots,F_{2n-1}}$ is a set of 1-factorizations such that $(V,F)$ is a 1-factorization of $K_{2n}$, and $alpha =(alpha_1,dots,alpha_{2n-1})$ is a field assignment, i.e. the $alpha_i $ maps the $n$ 2-subsets of $F_i$ onto the set of fields $P$. The appearance matrix of a tournament design TD$(n)$ is an $n times 2n$ matrix $A=(a_{ij})$ where the entry $a_{ij}$ is the numberof times the team $T_j$ plays on the field $P_i$. This paper introduces two measures of imbalance, team imbalance and field imbalance. Both of these are defined in terms of the appearance matrix. The team imbalance of the team $T_j$, $I_T(j)$, is the maximum over $i$ and $k$ of ${|a_{ij} - a_{kj}|: i,k in {1,dots,n}}$, and the total team imbalance $text{IT}(D)$ of the tournament design $D$ is $sum_{j=1}^{2n} I_T(j)$. Similarly, the field imbalance of the field $P_i$, $I_F(i)$, is

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2001

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    The Australasian Journal of Combinatorics

  • ISSN

    1034-4942

  • e-ISSN

  • Volume of the periodical

    1

  • Issue of the periodical within the volume

    23

  • Country of publishing house

    AU - AUSTRALIA

  • Number of pages

    15

  • Pages from-to

    237-251

  • UT code for WoS article

  • EID of the result in the Scopus database