All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Neural networks for function approximation in dynamic modeling

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F08%3A00018969" target="_blank" >RIV/61989100:27240/08:00018969 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Neural networks for function approximation in dynamic modeling

  • Original language description

    The paper demonstrates the comparsion of Monte Carlo simulation (MC) algorithm with the Radial Basis Function (RBF) neural network enhancement of the same algorithm in the reliability case study. In our test, we dispose of the tank containing liquid water ? its temperature process variable evolves deterministicly according to the differential equation, which solution is known. All component failures are considered as a stochastic events. In the case of surpassing temperature treshhold of the liquid inside the tank, we interpret the situation as the system failure. With regard to process dynamics, we attempt to evaluate the tank system unreliability related to the initiative input parameters setting. The neural network is used in equation coeficients calculation, which is executed in each transient state. Due to the neural networks, for some of the initial component settings, we can achieve the results of computation faster than in classical way of coeficients calculating and substituti

  • Czech name

    Dynamické modelování s použitím neuronových sítí

  • Czech description

    Příspěvek demonstruje řešení modelové úlohy dynamické spolehlivosti pomocí metod umělé inteligence, konkrétně neuronových sítí. V rámci příspěvku byly porovnány dva metodické postupy řešení této úlohy: simulace MC a algoritmus založený na neuronových sítích. Závěr konstatuje, že oba přístupy jsou kvantitativně srovnatelné.

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JS - Reliability and quality management, industrial testing

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/1M06047" target="_blank" >1M06047: Research Center for Quality and Reliability of Production</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2008

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Second Summer Safety and Reliability Seminars SSARS 2008

  • ISBN

    978-83-925436-1-9

  • ISSN

  • e-ISSN

  • Number of pages

    5

  • Pages from-to

  • Publisher name

    Krzysztof Kolowrocki Joanna Soszynska Enrico Zio

  • Place of publication

    Gdansk-Sopot, Poland

  • Event location

    Gdansk-Sopot

  • Event date

    Jun 23, 2008

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article