Optimizing Information Retrieval Using Evolutionary Algorithms and Fuzzy Inference System
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F09%3A00020974" target="_blank" >RIV/61989100:27240/09:00020974 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Optimizing Information Retrieval Using Evolutionary Algorithms and Fuzzy Inference System
Original language description
With the rapid growth of the amount of data available in electronic libraries, through Internet and enterprise network mediums, advanced methods of search and information retrieval are in demand. Information retrieval systems, designed for storing, maintaining and searching large-scale sets of unstructured documents, are the subject of intensive investigation. An information retrieval system, a sophisticated application managing underlying documentary databases, is at the core of every search engine, including Internet search services. There is a clear demand for fine-tuning the performance of information retrieval systems. One step in optimizing the information retrieval experience is the deployment of Genetic Algorithms, a widely used subclass of Evolutionary Algorithms that have proved to be a successful optimization tool in many areas. In this paper, we revise and extend genetic approaches to information retrieval leverage via the optimization of search queries. As the next trend i
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F09%2F0990" target="_blank" >GA201/09/0990: XML data processing</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2009
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
Foundations of Computational Intelligence Volume 4
ISBN
978-3-642-01087-3
Number of pages of the result
26
Pages from-to
—
Number of pages of the book
394
Publisher name
Springer Heidelberg
Place of publication
Berlín
UT code for WoS chapter
—