A scalable TFETI based algorithm for 2D and 3D frictionless contact problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F10%3A86075316" target="_blank" >RIV/61989100:27240/10:86075316 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27230/10:86075316
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
A scalable TFETI based algorithm for 2D and 3D frictionless contact problems
Original language description
We report our recent results in the development of theoretically supported scalable algorithms for the solution of large scale complex contact problems of elasticity. The algorithms combine the TFETI based domain decomposition method adapted to the solution of 2D and 3D frictionless multibody contact problems of elasticity with our in a sense optimal algorithms for the solution of the resulting quadratic programming problems. Rather surprisingly, the theoretical results are qualitatively the same as theclassical results on scalability of FETI for the linear elliptic problems. The efficiency of the method is demonstrated by the results of numerical experiments with parallel solution of both coercive and semicoercive 2D and 3D contact problems.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F07%2F0294" target="_blank" >GA201/07/0294: Qualitative analysis of contact problems with friction and asymptotically optimal algorithms for their solution</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Lecture Notes in Computer Science
ISBN
978-3-642-12534-8
ISSN
0302-9743
e-ISSN
—
Number of pages
8
Pages from-to
—
Publisher name
Springer-Verlag Berlin Heidelberg
Place of publication
Berlin Heidelberg
Event location
Sozopol
Event date
Jun 4, 2009
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000278091900009