Scalable domain decomposition algorithms for contact problems: theory, numerical experiments, and real world problems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F13%3A86088838" target="_blank" >RIV/61989100:27240/13:86088838 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/13:86088838 RIV/61989100:27230/13:86088838
Result on the web
<a href="http://link.springer.com/chapter/10.1007%2F978-3-642-35275-1_4" target="_blank" >http://link.springer.com/chapter/10.1007%2F978-3-642-35275-1_4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-35275-1_4" target="_blank" >10.1007/978-3-642-35275-1_4</a>
Alternative languages
Result language
angličtina
Original language name
Scalable domain decomposition algorithms for contact problems: theory, numerical experiments, and real world problems
Original language description
We review our results related to the development of theoretically supported scalable algorithms for the solution of large scale contact problems of elasticity. The algorithms combine the Total FETI/BETI based domain decomposition method adapted to the solution of 2D and 3D multibody contact problems of elasticity, both frictionless and with friction, with our in a sense optimal algorithms for the solution of resulting quadratic programming and QPQC problems. Rather surprisingly, the theoretical resultsare qualitatively the same as the classical results on scalability of FETI/BETI for linear elliptic problems. The efficiency of the method is demonstrated by results of parallel numerical experiments for contact problems of linear elasticity discretizedby more than 11 million variables in 3D and 40 million variables in 2D
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA201%2F07%2F0294" target="_blank" >GA201/07/0294: Qualitative analysis of contact problems with friction and asymptotically optimal algorithms for their solution</a><br>
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Computational Science and Engineering. Volume 91
ISSN
1439-7358
e-ISSN
—
Volume of the periodical
91
Issue of the periodical within the volume
2013
Country of publishing house
DE - GERMANY
Number of pages
11
Pages from-to
39-49
UT code for WoS article
—
EID of the result in the Scopus database
—