All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Constructing distance magic graphs from regular graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F11%3A86080375" target="_blank" >RIV/61989100:27240/11:86080375 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Constructing distance magic graphs from regular graphs

  • Original language description

    A graph G with k vertices is distance magic if the vertices can be labeled with numbers 1,2,..., k so that the sum of labels of the neighbors of each vertex is equal to the same constant ?0. We present a construction of distance magic graphs arising fromarbitrary regular graphs based on an application of magic rectangles. We also solve a problem posed by Shafiq, Ali, and Simanjuntak.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    JCMCC. The Journal of Combinatorial Mathematics and Combinatorial Computing

  • ISSN

    0835-3026

  • e-ISSN

  • Volume of the periodical

    78

  • Issue of the periodical within the volume

  • Country of publishing house

    CA - CANADA

  • Number of pages

    6

  • Pages from-to

    349-354

  • UT code for WoS article

  • EID of the result in the Scopus database