Factorizations of complete graphs into brooms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86084374" target="_blank" >RIV/61989100:27240/12:86084374 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.disc.2011.11.034" target="_blank" >http://dx.doi.org/10.1016/j.disc.2011.11.034</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.disc.2011.11.034" target="_blank" >10.1016/j.disc.2011.11.034</a>
Alternative languages
Result language
angličtina
Original language name
Factorizations of complete graphs into brooms
Original language description
Let r and n be positive integers with r < 2n. A broom of order 2n is the union of the path on P2n-r-1 and the star K-1.r, plus one edge joining the center of the star to an endpoint of the path. It was shown by Kubesa (2005) [10] that the broom factorizes the complete graph K-2n for odd n and r < [n/2]. In this note we give a complete classification of brooms that factorize K2n by giving a constructive proof for all r <= n+1/2 (with one exceptional case) and by showing that the brooms for r > n+1/2 do not factorize the complete graph K-2n. (C) 2011 Elsevier B.V. All rights reserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Discrete Mathematics
ISSN
0012-365X
e-ISSN
—
Volume of the periodical
312
Issue of the periodical within the volume
6
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
1084-1093
UT code for WoS article
000300811200002
EID of the result in the Scopus database
—