All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hierarchical multi-dimensional differential evolution for the design of beta basis function neural network

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86084510" target="_blank" >RIV/61989100:27240/12:86084510 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.neucom.2012.04.008" target="_blank" >http://dx.doi.org/10.1016/j.neucom.2012.04.008</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.neucom.2012.04.008" target="_blank" >10.1016/j.neucom.2012.04.008</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hierarchical multi-dimensional differential evolution for the design of beta basis function neural network

  • Original language description

    This paper proposes a hierarchical multi-dimensional differential evolution (HMDDE) algorithm, which is an automatic computational frame work for the optimization of beta basis function neural network (BBFNN) wherein the neural network architecture, weights connection, learning algorithm and its parameters are adapted according to the problem. In the HMDDE-designed neural network, the number of individuals of the population multi-dimensions is the number of beta neural networks. The population of HMDDEforms multiple beta networks with different structures at the higher level and each individual of the previous population is optimized at a lower hierarchical level to improve the performance of each individual. For the beta neural network consisting ofm neurons, n individuals (different lengths) are formed in the upper level to optimize the structure of the beta neural network. In the lower level, the population within the same length is to optimize the free parameters of the beta neur

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Neurocomputing

  • ISSN

    0925-2312

  • e-ISSN

  • Volume of the periodical

    97

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    131-140

  • UT code for WoS article

    000309318200015

  • EID of the result in the Scopus database