All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Hierarchical particle swarm optimization for the design of beta basis function neural network

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F13%3A86092932" target="_blank" >RIV/61989100:27240/13:86092932 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-642-32063-7_22" target="_blank" >http://dx.doi.org/10.1007/978-3-642-32063-7_22</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-642-32063-7_22" target="_blank" >10.1007/978-3-642-32063-7_22</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Hierarchical particle swarm optimization for the design of beta basis function neural network

  • Original language description

    A novel learning algorithm is proposed for non linear modeling and identification by the use of the beta basis function neural network (BBFNN). The proposed method is a hierarchical particle swarm optimization (HPSO). The objective of this paper is to optimize the parameters of the beta basis function neural network (BBFNN) with high accuracy. The population of HPSO forms multiple beta neural networks with different structures at an upper hierarchical level and each particle of the previous population is optimized at a lower hierarchical level to improve the performance of each particle swarm. For the beta neural network consisting n particles are formed in the upper level to optimize the structure of the beta neural network. In the lower level, the population within the same length particle is to optimize the free parameters of the beta neural network. Experimental results on a number of benchmarks problems drawn from regression and time series prediction area demonstrate that the HPSO produces a better generalization performance. 2013 Springer-Verlag.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Intelligent Systems and Computing. Volume 182

  • ISBN

    978-3-642-32062-0

  • ISSN

    2194-5357

  • e-ISSN

  • Number of pages

    13

  • Pages from-to

    193-205

  • Publisher name

    Springer

  • Place of publication

    Heidelberg

  • Event location

    Chennai

  • Event date

    Aug 4, 2012

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000315536100022