All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A hybrid intelligent approach for network intrusion detection

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F12%3A86092952" target="_blank" >RIV/61989100:27240/12:86092952 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.proeng.2012.01.827" target="_blank" >http://dx.doi.org/10.1016/j.proeng.2012.01.827</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.proeng.2012.01.827" target="_blank" >10.1016/j.proeng.2012.01.827</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A hybrid intelligent approach for network intrusion detection

  • Original language description

    Intrusion detection is an emerging area of research in the computer security and networks with the growing usage of internet in everyday life. Most intrusion detection systems (IDSs) mostly use a single classifier algorithm to classify the network traffic data as normal behaviour or anomalous. However, these single classifier systems fail to provide the best possible attack detection rate with low false alarm rate. In this paper, we propose to use a hybrid intelligent approach using combination of classifiers in order to make the decision intelligently, so that the overall performance of the resultant model is enhanced. The general procedure in this is to follow the supervised or un-supervised data filtering with classifier or clusterer first on the whole training dataset and then the output is applied to another classifier to classify the data. We use 2-class classification strategy along with 10-fold cross validation method to produce the final classification results in terms of normal or intrusion. Experimental results on NSL-KDD dataset, an improved version of KDDCup 1999 dataset show that our proposed approach is efficient with high detection rate and low false alarm rate.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Procedia Engineering. Volume 30

  • ISBN

  • ISSN

    1877-7058

  • e-ISSN

  • Number of pages

    9

  • Pages from-to

    1-9

  • Publisher name

    Elsevier

  • Place of publication

    Amsterdam

  • Event location

    Coimbatore

  • Event date

    Dec 7, 2011

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000314170600001