All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Efficient Construction of Semilinear Representations of Languages Accepted by Unary Nondeterministic Finite Automata

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F13%3A86088970" target="_blank" >RIV/61989100:27240/13:86088970 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.cs.vsb.cz/sawa/papers/fi2013.pdf" target="_blank" >http://www.cs.vsb.cz/sawa/papers/fi2013.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3233/FI-2013-802" target="_blank" >10.3233/FI-2013-802</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Efficient Construction of Semilinear Representations of Languages Accepted by Unary Nondeterministic Finite Automata

  • Original language description

    In languages over a unary alphabet, i.e., an alphabet with only one letter, words can be identified with their lengths. It is well known that each regular language over a unary alphabet can be represented as the union of a finite number of arithmetic progressions. Given a nondeterministic finite automaton (NFA) working over a unary alphabet (a unary NFA), the arithmetic progressions representing the language accepted by the automaton can be easily computed by the determinization of the given NFA. However, the number of the arithmetic progressions computed in this way can be exponential with respect to the size of the original automaton. Chrobak (1986) has shown that in fact O(n^2) arithmetic progressions are sufficient for the representation of the language accepted by a unary NFA with n states, and Martinez (2002) has shown how these progressions can be computed in polynomial time. Recently, To (2009) has pointed out that Chrobak's construction and Martinez's algorithm, which is based

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP202%2F11%2F0340" target="_blank" >GAP202/11/0340: Modelling and verification of parallel systems</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Fundamenta Informaticae

  • ISSN

    0169-2968

  • e-ISSN

  • Volume of the periodical

    123

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    97-106

  • UT code for WoS article

    000317267500007

  • EID of the result in the Scopus database