Efficient Construction of Semilinear Representations of Languages Accepted by Unary NFA
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F10%3A86075823" target="_blank" >RIV/61989100:27240/10:86075823 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Efficient Construction of Semilinear Representations of Languages Accepted by Unary NFA
Original language description
Chrobak (1986) proved that a language accepted by a given nondeterministic finite automaton with one-letter alphabet, i.e., a unary NFA, with n states can be represented as the union of O(n(2)) arithmetic progressions, and Martinez (2002) has shown how to compute these progressions in polynomial time. To (2009) has pointed out recently that Chrobak's construction and Martinez's algorithm, which is based on it, contain a subtle error and has shown how they can be corrected. In this paper, a new simpler and more efficient algorithm for the same problem is presented. The running time of the presented algorithm is O(n(2)(n+m)), where n is the number of states and m the number of transitions of a given unary NFA.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/1M0567" target="_blank" >1M0567: Centre for Applied Cybernetics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Reachability Problems
ISBN
978-3-642-15348-8
ISSN
0302-9743
e-ISSN
—
Number of pages
7
Pages from-to
—
Publisher name
Springer-Verlag Berlin Heidelberg
Place of publication
Berlin Heidelberg
Event location
Brno, Česká republika
Event date
Aug 28, 2010
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000283104200012