All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F14%3A86092160" target="_blank" >RIV/61989100:27240/14:86092160 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/14:86092160

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S0096300314012697#" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0096300314012697#</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.amc.2014.09.044" target="_blank" >10.1016/j.amc.2014.09.044</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature

  • Original language description

    The paper deals with an effective implementation of some algorithms for the solution of convex QPQC problems with elliptic and other separable constraints with strong curvature. Here we discuss robust quantitative refinement of the Karush-Kuhn-Tucker conditions, extend existing results on the decrease of the cost function along the projected gradient path to separable constraints with elliptic components, and plug them into the existing algorithms for the solution of the QPQC problems with R-linear rateof convergence in the bounds on the spectrum. The results are then extended to the problems with separable inequality and linear equality constraints. The performance of the algorithms is demonstrated on the solution of a problem of two cantilever beamsin mutual contact with orthotropic Tresca and Coulomb friction discretized by up to one and half million nodal variables.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2014

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    APPLIED MATHEMATICS AND COMPUTATION

  • ISSN

    0096-3003

  • e-ISSN

  • Volume of the periodical

    247

  • Issue of the periodical within the volume

    2014/11/15

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    17

  • Pages from-to

    848-864

  • UT code for WoS article

    000344474800074

  • EID of the result in the Scopus database