All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Composing and Solving General Differential Equations using Extended Polynomial Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86095956" target="_blank" >RIV/61989100:27240/15:86095956 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/15:86095956

  • Result on the web

    <a href="http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7312058" target="_blank" >http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=7312058</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/INCoS.2015.28" target="_blank" >10.1109/INCoS.2015.28</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Composing and Solving General Differential Equations using Extended Polynomial Networks

  • Original language description

    Multi-variable data relations can define a partial differential equation, which describes an unknown complex function on a basis of discrete observations, using the similarity model analysis methods. Time-series can form an ordinary differential equation, which is analogously possible to replace by partial derivatives of the same type time-dependent observations. Polynomial neural networks can compose and solve an unknown general partial differential equation of a searched function or pattern model by means of low order composite multi-variable derivative fractions. Convergent sum series of relative terms, produced by polynomial networks, describe partial dependent derivative changes of some polynomial combinations of input variables and can substitutefor the general differential equation. This non-linear regression type is based on learned generalized partial elementary data relations, decomposed into a polynomial network derivative structure, which is able to define and create more

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Intelligent Networking and Collaborative Systems INCoS-2015 : 7th International Conference : proceedings : September 2-4, 2015, Taipei, Tchaj-wan

  • ISBN

    978-1-4673-7694-5

  • ISSN

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    110 - 115

  • Publisher name

    IEEE

  • Place of publication

    Danvers

  • Event location

    Taipei

  • Event date

    Sep 2, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article