Approximation of Multi-parametric Functions Using The Differential Polynomial Neural Network
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F13%3A86087417" target="_blank" >RIV/61989100:27740/13:86087417 - isvavai.cz</a>
Result on the web
<a href="http://www.iaumath.com/content/7/1/33" target="_blank" >http://www.iaumath.com/content/7/1/33</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/2251-7456-7-33" target="_blank" >10.1186/2251-7456-7-33</a>
Alternative languages
Result language
angličtina
Original language name
Approximation of Multi-parametric Functions Using The Differential Polynomial Neural Network
Original language description
Unknown data relations can describe a lot of complex systems through a partial differential equation solution of a multi-parametric function approximation. Common artificial neural network techniques of a pattern classification or function approximationin general are based on whole-pattern similarity relations of trained and tested data samples. It applies input variables of only absolute interval values, which may cause problems by far various training and testing data ranges. Differential polynomialneural network is a new type of neural network developed by the author, which constructs and resolves an unknown general partial differential equation, describing a system model of dependent variables. It creates a sum of fractional polynomial terms, defining partial mutual derivative changes of input variables combinations. This type of regression is based on learned generalized data relations. It might improve dynamic system models a standard time-series prediction, as the character of
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.30.0016" target="_blank" >EE2.3.30.0016: Opportunities for young researchers</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Mathematical Sciences
ISSN
2251-7456
e-ISSN
—
Volume of the periodical
7
Issue of the periodical within the volume
7
Country of publishing house
DE - GERMANY
Number of pages
7
Pages from-to
1-7
UT code for WoS article
—
EID of the result in the Scopus database
—