All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Approximation of Multi-parametric Functions Using The Differential Polynomial Neural Network

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F13%3A86087417" target="_blank" >RIV/61989100:27740/13:86087417 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.iaumath.com/content/7/1/33" target="_blank" >http://www.iaumath.com/content/7/1/33</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/2251-7456-7-33" target="_blank" >10.1186/2251-7456-7-33</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Approximation of Multi-parametric Functions Using The Differential Polynomial Neural Network

  • Original language description

    Unknown data relations can describe a lot of complex systems through a partial differential equation solution of a multi-parametric function approximation. Common artificial neural network techniques of a pattern classification or function approximationin general are based on whole-pattern similarity relations of trained and tested data samples. It applies input variables of only absolute interval values, which may cause problems by far various training and testing data ranges. Differential polynomialneural network is a new type of neural network developed by the author, which constructs and resolves an unknown general partial differential equation, describing a system model of dependent variables. It creates a sum of fractional polynomial terms, defining partial mutual derivative changes of input variables combinations. This type of regression is based on learned generalized data relations. It might improve dynamic system models a standard time-series prediction, as the character of

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/EE2.3.30.0016" target="_blank" >EE2.3.30.0016: Opportunities for young researchers</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematical Sciences

  • ISSN

    2251-7456

  • e-ISSN

  • Volume of the periodical

    7

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    7

  • Pages from-to

    1-7

  • UT code for WoS article

  • EID of the result in the Scopus database