All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Forecast Models of Partial Differential Equations using Polynomial Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F13%3A86087575" target="_blank" >RIV/61989100:27740/13:86087575 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-01796-9_1" target="_blank" >http://dx.doi.org/10.1007/978-3-319-01796-9_1</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-01796-9_1" target="_blank" >10.1007/978-3-319-01796-9_1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Forecast Models of Partial Differential Equations using Polynomial Networks

  • Original language description

    Unknown data relations can describe lots of complex systems through partial differential equation solutions of a multi-parametric function approximation. Common neural network techniques of pattern classification or function approximation problems in general are based on whole-pattern similarity relationships of trained and tested data samples. They apply input variables of only absolute interval values, which may cause problems by far various training and testing data ranges. Differential polynomial neural network is a new type of neural network developed by the author, which constructs and substitutes an unknown general sum partial differential equation, defining a system model of dependent variables. It generates a total sum of fractional polynomialterms defining partial relative derivative dependent changes of some combinations of input variables. This type of regression is based only on trained generalized data relations. The character of relative data allows processing a wider r

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/EE2.3.30.0016" target="_blank" >EE2.3.30.0016: Opportunities for young researchers</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Intelligent Systems and Computing. Volume 238

  • ISBN

    978-3-319-01795-2

  • ISSN

    2194-5357

  • e-ISSN

  • Number of pages

    11

  • Pages from-to

    1-11

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Praha

  • Event date

    Aug 25, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article