Wind Speed Forecast Correction Models using Polynomial Neural Networks
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86095960" target="_blank" >RIV/61989100:27240/15:86095960 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0960148115003341" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0960148115003341</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.renene.2015.04.054" target="_blank" >10.1016/j.renene.2015.04.054</a>
Alternative languages
Result language
angličtina
Original language name
Wind Speed Forecast Correction Models using Polynomial Neural Networks
Original language description
Accurate short-term wind speed forecasting is important for the planning of a renewable energy power generation and utilization, especially in grid systems. In meteorology it is usual to improve the forecasts by means of some post-processing methods using local measurements and weather prediction model outputs. Neural networks, trained with local real data observations can improve short-term wind speed forecasts with respect to meso-scale numerical meteorological model outcomes of the same data types inthe majority of cases. Large-scale forecast models are based on the numerical integration of differential equation systems, which can describe atmospheric circulation processes on account of global meteorological observations. Several layer 3D complex models, which involve a large number of matrix variables, cannot exactly describe conditions near the ground, highly influenced by a landscape relief, coast, structure and other factors. Polynomial neural networks can form and solve genera
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Renewable Energy
ISSN
0960-1481
e-ISSN
—
Volume of the periodical
83
Issue of the periodical within the volume
—
Country of publishing house
GB - UNITED KINGDOM
Number of pages
9
Pages from-to
998-1006
UT code for WoS article
—
EID of the result in the Scopus database
—