All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Wind Speed Forecast Correction Models using Polynomial Neural Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86095960" target="_blank" >RIV/61989100:27240/15:86095960 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S0960148115003341" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0960148115003341</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.renene.2015.04.054" target="_blank" >10.1016/j.renene.2015.04.054</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Wind Speed Forecast Correction Models using Polynomial Neural Networks

  • Original language description

    Accurate short-term wind speed forecasting is important for the planning of a renewable energy power generation and utilization, especially in grid systems. In meteorology it is usual to improve the forecasts by means of some post-processing methods using local measurements and weather prediction model outputs. Neural networks, trained with local real data observations can improve short-term wind speed forecasts with respect to meso-scale numerical meteorological model outcomes of the same data types inthe majority of cases. Large-scale forecast models are based on the numerical integration of differential equation systems, which can describe atmospheric circulation processes on account of global meteorological observations. Several layer 3D complex models, which involve a large number of matrix variables, cannot exactly describe conditions near the ground, highly influenced by a landscape relief, coast, structure and other factors. Polynomial neural networks can form and solve genera

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/ED1.1.00%2F02.0070" target="_blank" >ED1.1.00/02.0070: IT4Innovations Centre of Excellence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Renewable Energy

  • ISSN

    0960-1481

  • e-ISSN

  • Volume of the periodical

    83

  • Issue of the periodical within the volume

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

    998-1006

  • UT code for WoS article

  • EID of the result in the Scopus database