Wind speed NWP local revisions using a polynomial decomposition of the general partial differential equation
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10237628" target="_blank" >RIV/61989100:27240/17:10237628 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27730/17:10237628 RIV/61989100:27740/17:10237628
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-68321-8_5" target="_blank" >http://dx.doi.org/10.1007/978-3-319-68321-8_5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-68321-8_5" target="_blank" >10.1007/978-3-319-68321-8_5</a>
Alternative languages
Result language
angličtina
Original language name
Wind speed NWP local revisions using a polynomial decomposition of the general partial differential equation
Original language description
Precise daily weather forecasts are necessary for the utilization of renewable energy sources and their penetration into grid systems. Standard meteorological statistical post-processing methods relate local observations with numerical predictions to eliminate systematic forecast errors. Neural networks, trained with the last historical series, can model the current weather frame to refine a target forecast for specific local conditions and reduce random prediction errors. Their daily correction models can process numerical prediction model outcomes of the same data types (instead of the unknown data) to recalculate 24-hour wind speed forecast series. Global numerical weather models succeed generally in forecasting upper air patterns but are too crude to account for local variations in surface weather. Long-term complex forecast systems, which simulate the dynamics of the complete atmosphere in several layers, cannot exactly detail local conditions near the ground, determined by the terrain relief, structure, landscape character, pattern and other factors. Extended polynomial networks can decompose and solve general linear partial differential equations, being able to model properly unknown dynamic systems. In all the network nodes are produced series of relative polynomial derivative terms, which convergent sum combinations can directly define and substitute for the general differential equation to model an uncertain system target function. The proposed local forecast correction procedure using adaptive derivative regression model can improve numerical daily wind speed forecasts in the majority of days. © Springer International Publishing AG 2018.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Intelligent Systems and Computing. Volume 679
ISBN
978-3-319-68320-1
ISSN
2194-5357
e-ISSN
2194-5365
Number of pages
11
Pages from-to
45-55
Publisher name
Springer
Place of publication
Cham
Event location
Varna
Event date
Sep 14, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—