All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multi-site post-processing of numerical forecasts using a polynomial network substitution for the general differential equation based on operational calculus

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27730%2F18%3A10240151" target="_blank" >RIV/61989100:27730/18:10240151 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.asoc.2018.08.040" target="_blank" >https://doi.org/10.1016/j.asoc.2018.08.040</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multi-site post-processing of numerical forecasts using a polynomial network substitution for the general differential equation based on operational calculus

  • Original language description

    Precise daily forecasts of local wind speed are necessary for planning of the changeable wind power production. Anomalies in local weather cause inaccuracies in daily predictions using meso-scale numerical models. Statistical methods using historical data can adapt the forecasts to specific local conditions. Based on a 2-stage approach of the Perfect Prog method, used routinely in meteorology, the article proposes an enhanced forecast correction procedure with initial estimations of the optimal numbers of training days whose latest data observations are used to elicit daily prediction models. Determination of this main training parameter allows for improvements in the middle-term numerical forecasts of wind speed in the majority of prediction days. Subsequently in the 2nd stage the correction model post-processes numerical forecasts of the training input variables to calculate 24-hour prediction series of the target wind speed at the corresponding time. Differential polynomial network is used to develop the test and post-processing models, which represent the current spatial data relations between the relevant meteorological inputs-&gt;output quantities. This innovative machine learning method defines and substitutes for the general linear partial differential equation being able to describe the local atmospheric dynamics which is too complex and uncertain to be represented by standard soft-computing techniques. The complete derivative formula is decomposed into specific sub-solutions of node unknown sum functions in the multi-layer polynomial network structure using Operational Calculus to model the searched separable output function.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Applied Soft Computing

  • ISSN

    1568-4946

  • e-ISSN

  • Volume of the periodical

    73

  • Issue of the periodical within the volume

    73

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    11

  • Pages from-to

    192-202

  • UT code for WoS article

    000450124900014

  • EID of the result in the Scopus database