All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Nature-Inspired Algorithms for Selecting EEG Sources for Motor Imagery Based BCI

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86096572" target="_blank" >RIV/61989100:27240/15:86096572 - isvavai.cz</a>

  • Alternative codes found

    RIV/67985807:_____/15:00444967

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-19369-4_8" target="_blank" >http://dx.doi.org/10.1007/978-3-319-19369-4_8</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-19369-4_8" target="_blank" >10.1007/978-3-319-19369-4_8</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Nature-Inspired Algorithms for Selecting EEG Sources for Motor Imagery Based BCI

  • Original language description

    In this article we examine the performance of two well-known metaheuristic techniques (Genetic Algorithm and Simulating Annealing) for selecting the input features of a classifier in a BCI system. An important problem of the EEG-based BCI system consistsin designing the EEG pattern classifier. The selection of the EEG channels used for building that learning predictor has impact in the classifier performance. We present results of both metaheuristic techniques on real data set when the classifier is aBayesian predictor. We statistically compare that performances with a random selection of the EEG channels. According our empirical results our approach significantly increases the accuracy of the learning predictor. (C) Springer International PublishingSwitzerland 2015.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science. Volume 9120

  • ISBN

    978-3-319-19368-7

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    79-90

  • Publisher name

    Springer Verlag

  • Place of publication

    London

  • Event location

    Zakopane

  • Event date

    Jun 14, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article