A Nature-inspired System for Mental State Recognition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241710" target="_blank" >RIV/61989100:27240/18:10241710 - isvavai.cz</a>
Alternative codes found
RIV/68407700:21230/18:00325828
Result on the web
<a href="https://ieeexplore.ieee.org/document/8477828" target="_blank" >https://ieeexplore.ieee.org/document/8477828</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CEC.2018.8477828" target="_blank" >10.1109/CEC.2018.8477828</a>
Alternative languages
Result language
angličtina
Original language name
A Nature-inspired System for Mental State Recognition
Original language description
In this article, we apply metaheuristics and Neural Networks for classifying human mental activities using EEG signals. We developed a Brain-Computer Interface system that is able to classify mental concentration versus relaxation. We collect the brain information during specific activities of the subject. Besides, we selected the best combination of the input features using the following two metaheuristic techniques: Simulated Annealing and Geometric Particle Swarm Optimization. The classification problem is solved using Neural Networks. We show that is possible to identify the human concentration using few EEG signals. In addition, the proposed system is developed with a fast and robust learning technique that can be easily adapted according to each subject.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GJ16-25694Y" target="_blank" >GJ16-25694Y: Multi-paradigm data mining algorithms based on information retrieval, fuzzy, and bio-inspired methods</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2018 IEEE Congress on Evolutionary Computation, CEC 2018 - Proceedings
ISBN
978-1-5090-6017-7
ISSN
—
e-ISSN
neuvedeno
Number of pages
8
Pages from-to
1161-1168
Publisher name
IEEE
Place of publication
Piscataway
Event location
Rio de Janeiro
Event date
Jul 8, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000451175500149