All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Estimating Harvestable Solar Energy from Atmospheric Pressure Using Support Vector Regression

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F15%3A86096787" target="_blank" >RIV/61989100:27240/15:86096787 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/INCoS.2015.58" target="_blank" >http://dx.doi.org/10.1109/INCoS.2015.58</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/INCoS.2015.58" target="_blank" >10.1109/INCoS.2015.58</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Estimating Harvestable Solar Energy from Atmospheric Pressure Using Support Vector Regression

  • Original language description

    Energy neutrality is the desired mode of operation of many sensor networks used for environmental monitoring. Intelligent energy harvesting networks, composed of nodes equipped with solar panels and other types of power-scavenging devices, can plan and manage their operations according to short and long-term predictions of ambient energy availability. This paper introduces a novel method for next-day solar energy prediction based on atmospheric pressure and support vector regression. A location-specificsupport vector regression model is in this approach created using a collection of geospatially correlated atmospheric pressure and solar intensity measurements. The trained model is used to estimate next day solar energy availability from a time seriesof recent atmospheric pressure values and their differences. The ability of the proposed system to estimate daily solar energy is compared to a recent evolutionary-fuzzy prediction scheme and traditional analytical estimates.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JB - Sensors, detecting elements, measurement and regulation

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2015

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Intelligent Networking and Collaborative Systems INCoS-2015 : 7th International Conference : proceedings : September 2-4, 2015, Taipei, Tchaj-wan

  • ISBN

    978-1-4673-7694-5

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    192-199

  • Publisher name

    IEEE

  • Place of publication

    Danvers

  • Event location

    Taipei

  • Event date

    Sep 2, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article