All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Neural network classification of SDR signal modulation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86098899" target="_blank" >RIV/61989100:27240/16:86098899 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/16:86098899

  • Result on the web

    <a href="http://link.springer.com/content/pdf/10.1007/978-3-319-45378-1_15.pdf" target="_blank" >http://link.springer.com/content/pdf/10.1007/978-3-319-45378-1_15.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-45378-1_15" target="_blank" >10.1007/978-3-319-45378-1_15</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Neural network classification of SDR signal modulation

  • Original language description

    With the rising popularity of Software Defined Radios (SDR), there is a strong demand for automatic detection of the modulation type and signal parameters. Automatic modulation classification is an approach to identify the modulation type and its parameters such as the carrier frequency or symbol rate. In electronic warfare, it enables real-time signal interception and processing. In civil applications, it can be used, e.g., by the amateur radio operators to automatically set the transceiver to the appropriate modulation and communication protocol. This paper presents a modulation classification driven by a neural network. A set of signal features are provided as an input of the neural network. The paper discusses the relevance of different signal features and its impact on the success rate of the neural network classification. The proposed approach is tested on both artificial and real samples captured by the SDR.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computer information systems and industrial management : 15th IFIP TC8 International Conference, CISIM 2016 : Vilnius, Lithuania, September 14-16, 2016 : proceedings

  • ISBN

    978-3-319-45377-4

  • ISSN

    0302-9743

  • e-ISSN

  • Number of pages

    12

  • Pages from-to

    160-171

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Vilnius

  • Event date

    Sep 14, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000388720000015