All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Experiments on data classification using relative Entropy

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099080" target="_blank" >RIV/61989100:27240/16:86099080 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-3-319-26227-7_22" target="_blank" >http://dx.doi.org/10.1007/978-3-319-26227-7_22</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-26227-7_22" target="_blank" >10.1007/978-3-319-26227-7_22</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Experiments on data classification using relative Entropy

  • Original language description

    Data classification is one of the basic tasks in data mining. In this paper, we propose a new classifier based on relative entropy, where data to particular class assignment is made by the majority good guess criteria. The presented approach is intended to be used when relations between datasets and assignment classes are rather complex, nonlinear, or with logical inconsistencies; because such datasets can be too complex to be classified by ordinary methods of decision trees or by the tools of logical analysis. The relative entropy evaluation of associative rules can be simple to interpret and offers better comprehensibility in comparison to decision trees and artificial neural networks. (C) Springer International Publishing Switzerland 2016.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Intelligent Systems and Computing. Volume 403

  • ISBN

    978-3-319-26225-3

  • ISSN

    2194-5357

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    233-242

  • Publisher name

    Springer Verlag

  • Place of publication

    London

  • Event location

    Wrocław

  • Event date

    May 25, 2015

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article