All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Granular transfer learning using type-2 fuzzy HMM for text sequence recognition

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099382" target="_blank" >RIV/61989100:27240/16:86099382 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S0925231216305434" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0925231216305434</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.neucom.2016.05.077" target="_blank" >10.1016/j.neucom.2016.05.077</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Granular transfer learning using type-2 fuzzy HMM for text sequence recognition

  • Original language description

    Context information plays an important role in text sequence recognition, but it is difficult to harness the uncertainty caused by conflicting implications. In this paper, we propose a novel Granular Transfer (GT) learning with type-2 fuzzy Hidden Markov Model (HMM) called GT2HMM, in which interpretable granules' representation is introduced to describe the contextual uncertainty for its transfer learning. The correspondences among words are transformed into information granules using fuzzy c-means. To fulfill the utilization of granular information in sequence recognition, we construct a type-2 fuzzy HMM which fuses labeled data and unlabeled observations. With a tunable granularity, correspondence information is refined in a coarse-to-fine manner in GT2HMM. Experiments on transductive and inductive transfer learning in part-of-speech (POS) tagging tasks verify the effectiveness of our proposed GT2HMM. (C) 2016 Elsevier B.V.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Neurocomputing

  • ISSN

    0925-2312

  • e-ISSN

  • Volume of the periodical

    214

  • Issue of the periodical within the volume

    2016

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    8

  • Pages from-to

    126-133

  • UT code for WoS article

    000386741300014

  • EID of the result in the Scopus database

    2-s2.0-84992530545