An implementation on MATLAB software for stability analysis of proportional controllers in linear time invariant control systems
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F16%3A86099930" target="_blank" >RIV/61989100:27240/16:86099930 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-31232-3_63" target="_blank" >http://dx.doi.org/10.1007/978-3-319-31232-3_63</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-31232-3_63" target="_blank" >10.1007/978-3-319-31232-3_63</a>
Alternative languages
Result language
angličtina
Original language name
An implementation on MATLAB software for stability analysis of proportional controllers in linear time invariant control systems
Original language description
Stability range of proportional (P) controllers can be obtained using Routh-Hurwitz criterion for continuous linear time invariant (LTI) control systems or Bistritz criterion, Jury criterion for discrete LTI systems. Conditions from these criterions bring out inequalities. In case of high-order plants, these inequalities are very difficult to solve directly. In the paper, an algorithm is developed on MATLAB software to solve polynomial inequalites. With the support of this algorithm, stability criterions are implemented to find stability range of P controllers. (C) Springer International Publishing Switzerland 2016.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
JA - Electronics and optoelectronics
OECD FORD branch
—
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Intelligent Systems and Computing. Volume 444
ISBN
978-3-319-31231-6
ISSN
2194-5357
e-ISSN
—
Number of pages
10
Pages from-to
671-680
Publisher name
Springer Verlag
Place of publication
London
Event location
Recife
Event date
Mar 22, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—