On regular handicap graphs of even order
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10236010" target="_blank" >RIV/61989100:27240/17:10236010 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/17:10236010
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S1571065317300951" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1571065317300951</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.endm.2017.06.010" target="_blank" >10.1016/j.endm.2017.06.010</a>
Alternative languages
Result language
angličtina
Original language name
On regular handicap graphs of even order
Original language description
Let G=(V,E) be a simple graph of order n. A bijection f : V→{1,2,…,n} is a handicap labeling of G if there exists an integer ℓ such that ∑u∈N(v)f(u)=ℓ+f(v) for all v∈V, where N(v) is the set of all vertices adjacent to v. Any graph which admits a handicap labeling is a handicap graph. We present an overview of results, which completely answer the question of existence of regular handicap graphs of even order. © 2017 Elsevier B.V.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/LQ1602" target="_blank" >LQ1602: IT4Innovations excellence in science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Electronic Notes in Discrete Mathematics
ISSN
1571-0653
e-ISSN
—
Volume of the periodical
60
Issue of the periodical within the volume
July 2017
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
8
Pages from-to
69-76
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85021426448