ON CONDITIONING OF SCHUR COMPLEMENTS OF H-TFETI CLUSTERS FOR 2D PROBLEMS GOVERNED BY LAPLACIAN
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10237703" target="_blank" >RIV/61989100:27240/17:10237703 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/17:10237703
Result on the web
<a href="http://articles.math.cas.cz/10.21136/AM.2017.0193-17" target="_blank" >http://articles.math.cas.cz/10.21136/AM.2017.0193-17</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.21136/AM.2017.0193-17" target="_blank" >10.21136/AM.2017.0193-17</a>
Alternative languages
Result language
angličtina
Original language name
ON CONDITIONING OF SCHUR COMPLEMENTS OF H-TFETI CLUSTERS FOR 2D PROBLEMS GOVERNED BY LAPLACIAN
Original language description
Bounds on the spectrum of the Schur complements of subdomain stiffness matrices with respect to the interior variables are key ingredients in the analysis of many domain decomposition methods. Here we are interested in the analysis of floating clusters, i.e. subdomains without prescribed Dirichlet conditions that are decomposed into still smaller subdomains glued on primal level in some nodes and/or by some averages. We give the estimates of the regular condition number of the Schur complements of the clusters arising in the discretization of problems governed by 2D Laplacian. The estimates depend on the decomposition and discretization parameters and gluing conditions. We also show how to plug the results into the analysis of H-TFETI methods and compare the estimates with numerical experiments. The results are useful for the analysis and implementation of powerful massively parallel scalable algorithms for the solution of variational inequalities.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Applications of Mathematics
ISSN
0862-7940
e-ISSN
—
Volume of the periodical
62
Issue of the periodical within the volume
6
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
20
Pages from-to
699-718
UT code for WoS article
000419946700009
EID of the result in the Scopus database
2-s2.0-85039848847