All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Adaptive Optimization of Control Parameters for Feed-Forward Software Defined Equalization

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F17%3A10238294" target="_blank" >RIV/61989100:27240/17:10238294 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/article/10.1007/s11277-017-4036-3" target="_blank" >https://link.springer.com/article/10.1007/s11277-017-4036-3</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11277-017-4036-3" target="_blank" >10.1007/s11277-017-4036-3</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Adaptive Optimization of Control Parameters for Feed-Forward Software Defined Equalization

  • Original language description

    In this paper we briefly describe the design, implementation, and evaluation of a novel adaptive optimization approach for the feed-forward software defined equalization (FFSDE) method using the least mean squared (LMS) algorithm. In our design, we adaptively change the filter length (N) and step size ((Formula presented.)) to achieve the optimal bit error rate value. We used a vector signal generator RF PXI-5670 and a vector signal analyzer (VSA) RF PXI-5660 to test the validity of our approach. We implemented our method for the M-ary quadrature amplitude modulation (M-QAM) scheme in the VSA (which served as a receiver). The experimental results showed that we achieved high convergence speed and accuracy for rapidly changing transmitter channel characteristics. The automatic optimal setting feature of the LMS Algorithm parameters N and (Formula presented.), enabled us to solve the hardware configuration problem for the FFSDE method. Determination of the LMS Algorithm training sequence size for the particular M-QAM allowed us to eliminate redundant data of the training sequence and increase the throughput. © 2017 Springer Science+Business Media New York

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Wireless Personal Communications

  • ISSN

    0929-6212

  • e-ISSN

  • Volume of the periodical

    95

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    1-11

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85011580149