Optimization of the training symbols for minimum mean square error equalize
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241686" target="_blank" >RIV/61989100:27240/18:10241686 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/chapter/10.1007/978-3-319-60834-1_28" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-60834-1_28</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-60834-1_28" target="_blank" >10.1007/978-3-319-60834-1_28</a>
Alternative languages
Result language
angličtina
Original language name
Optimization of the training symbols for minimum mean square error equalize
Original language description
The theory of Minimum Mean Square Error (MMSE) and Symbol Error Rate (SER) will be introduced and used as a parameter of analysis, we will find the optimized number of training symbols for different amounts of data. The training symbols are used in adaptive channel equalization where the communication channel is totally unknown, the training symbols are the data sent via the channel, the receiver already know which symbols it will receive, this way the equalizer can analyse the unknown channel and configure it's coefficients to improve the communication. Simulations of a communication channel made in Matlab together with the parameter SER will show the optimized settings for different amounts of numbers of symbols for different values of Eb/E0 (the energy per bit to noise power spectral density ratio). After the simulations results, the settings will be implemented in a real hardware device (NI RF VSG PXI-5670 Vector Signal Generator and NI RF PXI VSA 5661 Vector Signal Analyzer) and the concepts of Modulation Error Ratio (MER) and Additive White Gaussian Noise (AWGN) will be used to evaluate the communication. The main purpose of this paper is verifying the theoretical assumptions concerning the impact of the number of training symbols on the quality of channel equalization in case of a real hardware in the form of software-defined radio (SDR). The real experiments brought the unique results, which can be used for the implementation of the feed-forward software defined equalization. (C) 2018, Springer International Publishing AG.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20201 - Electrical and electronic engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in intelligent systems and computing. Volume 565
ISBN
978-3-319-60833-4
ISSN
2194-5357
e-ISSN
neuvedeno
Number of pages
17
Pages from-to
272-287
Publisher name
Springer
Place of publication
Berlin
Event location
Marrákeš
Event date
Nov 21, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—