All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Optimization of the training symbols for minimum mean square error equalize

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F18%3A10241686" target="_blank" >RIV/61989100:27240/18:10241686 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-319-60834-1_28" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-60834-1_28</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-60834-1_28" target="_blank" >10.1007/978-3-319-60834-1_28</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Optimization of the training symbols for minimum mean square error equalize

  • Original language description

    The theory of Minimum Mean Square Error (MMSE) and Symbol Error Rate (SER) will be introduced and used as a parameter of analysis, we will find the optimized number of training symbols for different amounts of data. The training symbols are used in adaptive channel equalization where the communication channel is totally unknown, the training symbols are the data sent via the channel, the receiver already know which symbols it will receive, this way the equalizer can analyse the unknown channel and configure it&apos;s coefficients to improve the communication. Simulations of a communication channel made in Matlab together with the parameter SER will show the optimized settings for different amounts of numbers of symbols for different values of Eb/E0 (the energy per bit to noise power spectral density ratio). After the simulations results, the settings will be implemented in a real hardware device (NI RF VSG PXI-5670 Vector Signal Generator and NI RF PXI VSA 5661 Vector Signal Analyzer) and the concepts of Modulation Error Ratio (MER) and Additive White Gaussian Noise (AWGN) will be used to evaluate the communication. The main purpose of this paper is verifying the theoretical assumptions concerning the impact of the number of training symbols on the quality of channel equalization in case of a real hardware in the form of software-defined radio (SDR). The real experiments brought the unique results, which can be used for the implementation of the feed-forward software defined equalization. (C) 2018, Springer International Publishing AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20201 - Electrical and electronic engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in intelligent systems and computing. Volume 565

  • ISBN

    978-3-319-60833-4

  • ISSN

    2194-5357

  • e-ISSN

    neuvedeno

  • Number of pages

    17

  • Pages from-to

    272-287

  • Publisher name

    Springer

  • Place of publication

    Berlin

  • Event location

    Marrákeš

  • Event date

    Nov 21, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article