On Morrey and BMO Regularity for Gradients of Minima of Certain Non-Differentiable Functionals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10242288" target="_blank" >RIV/61989100:27240/19:10242288 - isvavai.cz</a>
Result on the web
<a href="https://www.ems-ph.org/journals/show_abstract.php?issn=0232-2064&vol=38&iss=3&rank=4" target="_blank" >https://www.ems-ph.org/journals/show_abstract.php?issn=0232-2064&vol=38&iss=3&rank=4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/ZAA/1640" target="_blank" >10.4171/ZAA/1640</a>
Alternative languages
Result language
angličtina
Original language name
On Morrey and BMO Regularity for Gradients of Minima of Certain Non-Differentiable Functionals
Original language description
We consider minima of variational integrals with non-differentiable integrands in the form f (x, u, Du) = < A(x)Du, Du > + g(x, u, Du). Assuming that the part g(x, u, z) is equipped by sub-quadratic growth in z only for big value of vertical bar z vertical bar (but the growth is arbitrarily close to the quadratic one), we prove the everywhere Morrey and BMO regularity for gradients of minima.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10100 - Mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN
ISSN
0232-2064
e-ISSN
—
Volume of the periodical
38
Issue of the periodical within the volume
3
Country of publishing house
CH - SWITZERLAND
Number of pages
21
Pages from-to
329-349
UT code for WoS article
000475497300004
EID of the result in the Scopus database
—