All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Pattern Matching in Sequential Data Using Reservoir Projections

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F19%3A10253426" target="_blank" >RIV/61989100:27240/19:10253426 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-22796-8_19" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-22796-8_19</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-22796-8_19" target="_blank" >10.1007/978-3-030-22796-8_19</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Pattern Matching in Sequential Data Using Reservoir Projections

  • Original language description

    A relevant problem on data science is to define an efficient and reliable algorithm for finding specific patterns in a given signal. This type of problems often appears in medical applications, biophysical systems, complex systems, financial analysis, and several other domains. Here, we introduce a new model based in the ability of Recurrent Neural Networks (RNNs) for modelling time series. The technique encodes temporal information of the reference signal and the given query in a feature space. This encoding is done using a RNN. In the feature space, we apply similarity techniques for analysing differences among the projected points. The proposed method presents advantages with respect of state of art, it can produce good results using less computational costs. We discuss the proposal over three benchmark datasets. (C) 2019, Springer Nature Switzerland AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/TN01000024" target="_blank" >TN01000024: National Competence Center - Cybernetics and Artificial Intelligence</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). Volume 11554

  • ISBN

    978-3-030-22795-1

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    11

  • Pages from-to

    173-183

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Moskva

  • Event date

    Jul 10, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000611781800019