Bagging Technique Using Temporal Expansion Functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F14%3A86092399" target="_blank" >RIV/61989100:27740/14:86092399 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-08156-4_39" target="_blank" >http://dx.doi.org/10.1007/978-3-319-08156-4_39</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-08156-4_39" target="_blank" >10.1007/978-3-319-08156-4_39</a>
Alternative languages
Result language
angličtina
Original language name
Bagging Technique Using Temporal Expansion Functions
Original language description
The Bootstrap aggregating (Bagging) technique is widely used in the Machine Learning area, in order to reduce the prediction error of several unstable predictors. The method trains many predictors using bootstrap samples and combine them generating a newpower learning tool. Although, if the training data has temporal dependency the technique is not applicable. One of the most efficient models for the treatment of time series is the Recurrent Neural Network (RNN) model. In this article, we use a RNN toencode the temporal dependency of the input data, then in the new encoding space the Bagging technique can be applied. We analyze the behavior of various neural activation functions for encoding the input data. We use three simulated and three real time-series data to analyze our approach.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Soft Computing. Volume 303
ISBN
978-3-319-08155-7
ISSN
1615-3871
e-ISSN
—
Number of pages
10
Pages from-to
395-404
Publisher name
Springer Verlag
Place of publication
London
Event location
Ostrava
Event date
Jun 23, 2014
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000342841800039