All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Segmentation of CAPTCHA Using Corner Detection and Clustering

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10246213" target="_blank" >RIV/61989100:27240/20:10246213 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-50097-9_67" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-50097-9_67</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-50097-9_67" target="_blank" >10.1007/978-3-030-50097-9_67</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Segmentation of CAPTCHA Using Corner Detection and Clustering

  • Original language description

    Character segmentation is the key to CAPTCHA recognition. In order to solve the problem of low success rate of CAPTCHA segmentation caused by adhesive characters, an adhesion character segmentation algorithm based on corner detection and K-Means clustering was proposed. The algorithm performs corner detection on the CAPTCHA image of the adhesive characters, then uses K-Means clustering method to cluster the corner points of ROI, and determines the adhesion character segmentation line from the clustering results. The experimental results are compared with the drop-fall and skeletonization, in which the recognition accuracy of the image with serious adhesion is 92%. The result shows the superiority of the segmentation algorithm and provides a new method for the segmentation of adhesive characters.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Advances in Intelligent Systems and Computing. Volume 1156

  • ISBN

    978-3-030-50096-2

  • ISSN

    2194-5357

  • e-ISSN

    2194-5365

  • Number of pages

    12

  • Pages from-to

    655-666

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Ostrava

  • Event date

    Dec 2, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000590145400067