All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Factorizations of complete graphs into tadpoles

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10246872" target="_blank" >RIV/61989100:27240/20:10246872 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.scopus.com/record/display.uri?eid=2-s2.0-85083849832&origin=resultslist" target="_blank" >https://www.scopus.com/record/display.uri?eid=2-s2.0-85083849832&origin=resultslist</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.akcej.2020.02.004" target="_blank" >10.1016/j.akcej.2020.02.004</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Factorizations of complete graphs into tadpoles

  • Original language description

    A tadpole (also a canoe paddle or lollipop) is a graph that arises from a cycle and a path by gluing a terminal vertex of the path to an arbitrary vertex of the cycle. In this article, we show that all tadpoles factorize the complete graph K_2n+1 if n is odd. We use methods similar to those used for isomorphic factorizations of complete graphs K_2n+1 into spanning trees. In Section 4 of this article, we show that our methods do not work for isomorphic factorizations of K_2n+1 into tadpoles if n is even.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    AKCE International Journal of Graphs and Combinatorics

  • ISSN

    0972-8600

  • e-ISSN

  • Volume of the periodical

    2020

  • Issue of the periodical within the volume

    17

  • Country of publishing house

    IN - INDIA

  • Number of pages

    11

  • Pages from-to

    924-934

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85083849832