Optimal Control System Synthesis Based on the Approximation of Extremals by Symbolic Regression
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F20%3A10247255" target="_blank" >RIV/61989100:27240/20:10247255 - isvavai.cz</a>
Alternative codes found
RIV/61989100:27740/20:10247255
Result on the web
<a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9143798" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9143798</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Optimal Control System Synthesis Based on the Approximation of Extremals by Symbolic Regression
Original language description
The article presents a solution to the optimal control synthesis problem based on the approximation of extremals. At the first stage it is proposed to solve the optimal control problem for various initial states, and at the second stage, to use the found optimal trajectories to determine the structure of the synthesizing function. Symbolic regression methods are used for approximation. Simulation is carried out for a car-like robot. The structure of the synthesizing function is found by the network operator method. A comparison of the solutions obtained using the synthesizing function found for the set of initial conditions with known solutions allows concluding that the proposed method is effective for the optimal control system synthesis. (C) 2020 EUCA.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
European Control Conference 2020, ECC 2020
ISBN
978-3-907144-01-5
ISSN
—
e-ISSN
—
Number of pages
6
Pages from-to
2021-2026
Publisher name
IEEE
Place of publication
Piscataway
Event location
Petrohrad
Event date
May 12, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—