All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

A deep learning-based model for High-Speed Users' Mobility Prediction in Small Cell and Femtocell Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F21%3A10249650" target="_blank" >RIV/61989100:27240/21:10249650 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27740/21:10249650

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9653254" target="_blank" >https://ieeexplore.ieee.org/document/9653254</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TELFOR52709.2021.9653254" target="_blank" >10.1109/TELFOR52709.2021.9653254</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    A deep learning-based model for High-Speed Users' Mobility Prediction in Small Cell and Femtocell Networks

  • Original language description

    Users&apos; mobility has a huge impact on the performance of cellular networks. Particularly in the networks which are deployed with small cells, by predicting the next positions of the users, it can determine the nearby cells to the users before they arrive and prepare the connection, and estimate the mobile resources for them. In this paper, we proposed a model to predict the users&apos; next location based on Recurrent Neural Network (RNN) with Long-Short Term Memory (LSTM) cell, a Deep learning neural network. We use Simulation of Urban MObility (SUMO) to create our own users&apos; trajectory datasets to train and test the models. To prove the effectiveness of the model, we compare its performance with Deep Neural Network (DNN), and Gated Recurrent Unit (GRU) models, Baseline model (BL), and Linear regression model (LR). (C) 2021 IEEE.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20203 - Telecommunications

Result continuities

  • Project

    <a href="/en/project/LM2018140" target="_blank" >LM2018140: e-Infrastructure CZ</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    2021 29th Telecommunications Forum, TELFOR : Proceedings of Papers = XXIX Telekomunikacioni Forum, TELFOR 2021 : Zbornik radova : Online event : Belgrade, Serbia, November, 23-24, 2021

  • ISBN

    978-1-66542-584-1

  • ISSN

  • e-ISSN

  • Number of pages

    4

  • Pages from-to

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Bělehrad

  • Event date

    Nov 23, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article