All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

High-Speed Users' Mobility Prediction Scheme Based on Deep Learning for Small Cell and Femtocell Networks

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27740%2F22%3A10251111" target="_blank" >RIV/61989100:27740/22:10251111 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27240/22:10251111

  • Result on the web

    <a href="https://link.springer.com/chapter/10.1007/978-3-030-92574-1_47" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-92574-1_47</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-92574-1_47" target="_blank" >10.1007/978-3-030-92574-1_47</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    High-Speed Users' Mobility Prediction Scheme Based on Deep Learning for Small Cell and Femtocell Networks

  • Original language description

    Users&apos; mobility has a huge impact on the performance of cellular networks. Acknowledge users&apos; multiple next locations plays an important role in various aspects which can be mentioned as helping the base stations to pre-calculate and allocate the resource to users faster and more efficiently, shortening the duration of the handover process, reducing significantly the network data congestion, and increasing the overall users&apos; satisfaction. In our article, we focus our attention on multiple users and multi-position ahead prediction for femtocells and small cells, typical of 5G infrastructure. We use Autoregressive Gated Recurrent Units (AR-GRU) to perform the prediction based on acknowledging users&apos; trajectories. We use Simulation of Urban MObility (SUMO) to create our own users&apos; trajectory datasets to train and test the models. In order to prove the effectiveness of the model, we compare its performance with Autoregressive Long Short-Term Memory (AR-LSTM), Deep Learning Neural Network (DNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU) models. Then we use the models in two more different datasets from two different simulated regions to prove the ability to work in different contexts. (C) 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20203 - Telecommunications

Result continuities

  • Project

    <a href="/en/project/LM2018140" target="_blank" >LM2018140: e-Infrastructure CZ</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Networks and Systems. Volume 366

  • ISBN

    978-3-030-92573-4

  • ISSN

    2367-3370

  • e-ISSN

    2367-3389

  • Number of pages

    13

  • Pages from-to

    446-458

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Thai Nguyen

  • Event date

    Dec 1, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article