The effect of decoding fairness on particle swarm optimization for the p-median problem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10250414" target="_blank" >RIV/61989100:27240/22:10250414 - isvavai.cz</a>
Result on the web
<a href="https://dl.acm.org/doi/10.1145/3520304.3534030" target="_blank" >https://dl.acm.org/doi/10.1145/3520304.3534030</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1145/3520304.3534030" target="_blank" >10.1145/3520304.3534030</a>
Alternative languages
Result language
angličtina
Original language name
The effect of decoding fairness on particle swarm optimization for the p-median problem
Original language description
Solution encoding and decoding have a direct impact on meta-heuristic optimization methods. The mapping between search and solution spaces outlines the conditions for the metaheuristics and affects their ability to solve particular problems. The issue of encoding becomes especially pronounced when continuous metaheuristics are applied to discrete problems, in particular combinatorial problems with strict positional dependences in solution representations. This work takes a closer look at the decoding of combinations (fixed-length subsets) in continuous metaheuristics, demonstrates the inherent bias of simple combination decoding, and studies the effect of fair decoding in the context of the particle swarm optimization algorithm and the p-Median problem. (C) 2022 ACM.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10200 - Computer and information sciences
Result continuities
Project
<a href="/en/project/LTAIN19176" target="_blank" >LTAIN19176: Metaheuristics Framework for Multi-objective Combinatorial Optimization Problems (META MO-COP)</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2022
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
GECCO 2022 Companion - Proceedings of the 2022 Genetic and Evolutionary Computation Conference Companion
ISBN
978-1-4503-9268-6
ISSN
—
e-ISSN
—
Number of pages
8
Pages from-to
1650-1657
Publisher name
Association for Computing Machinery
Place of publication
New York
Event location
Boston
Event date
Jul 9, 2022
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—