All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Design Method of Constant Phase-Shifter Microwave Passive Integrated Circuit in 130-nm BiCMOS Technology With Bandpass-Type Negative Group Delay

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F22%3A10250870" target="_blank" >RIV/61989100:27240/22:10250870 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/document/9864582" target="_blank" >https://ieeexplore.ieee.org/document/9864582</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2022.3201137" target="_blank" >10.1109/ACCESS.2022.3201137</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Design Method of Constant Phase-Shifter Microwave Passive Integrated Circuit in 130-nm BiCMOS Technology With Bandpass-Type Negative Group Delay

  • Original language description

    The miniaturization and application development are the expected challenges on the today engineering design research on bandpass (BP) type negative group delay (NGD) circuit. To overcome this technical limit, an innovative contribution on integrated circuit (IC) design method of BP-NGD application to design constant phase shifter (PS) in 130-nm BiCMOS technology is developed in the present paper. The BP-NGD PS microwave passive IC is topologically consisted of cascade of CLC- and RLC-resonant networks. After the S-matrix modelling, the synthesis design equations enabling to calculate each lumped component values constituting the BP-NGD PS BiCMOS are established. The design equations are expressed knowing the targeted specifications as phase shift and operating frequency. The BiCMOS design methodology including the key steps as design rule checking (DRC), layout versus schematic (LVS) and post-layout simulation (PLS) is described. The miniaturized BP-NGD PS design feasibility is verified with schematic and layout simulations with IC CMOS standard commercial software tool. A proof-of-concept (POC) of 130-nm BiCMOS BP-NGD PS operating at the center frequency f(0) = 1.9 GHz and bandwidth Delta f = 0.1 GHz is designed and simulated. After DRC, the chip layout of miniaturized BP-NGD PS POC presents 0.407 mm(2) size. The BP-NGD PS POC exhibits constant phase shift notable value of about phi(0) = -90 degrees +/-0.4 degrees under S-21(f(0)) = -6+/-1 dB transmission coefficient with good flatness and reflection coefficients (S-21(f(0)) and S-21(f(0))) widely better than - dB. The design robustness is confirmed by 1000-trial Monte Carlo uncertainty analyses with PLS results. Because of the potential integration in wireless sensor networks (WSNs), the BP-NGD PS under study is a promising candidate for the improvement of the future 5G and 6G transceiver design.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20203 - Telecommunications

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    neuveden

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    20

  • Pages from-to

    93084-93103

  • UT code for WoS article

    000853793400001

  • EID of the result in the Scopus database