All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

GCZRec: Generative Collaborative Zero-Shot Framework for Cold Start News Recommendation

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10254338" target="_blank" >RIV/61989100:27240/24:10254338 - isvavai.cz</a>

  • Result on the web

    <a href="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10414986" target="_blank" >https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10414986</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2024.3359053" target="_blank" >10.1109/ACCESS.2024.3359053</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    GCZRec: Generative Collaborative Zero-Shot Framework for Cold Start News Recommendation

  • Original language description

    The aim of personalized news recommendation is to suggest news stories to the users that are most interesting for them. To improve the user experience, it is important that these news items are not only relevant to the user but also get recommended to them as soon as they are available. The inability of traditional collaborative filtering approach to recommend such cold start items has led to techniques that incorporate latent features of items in order to make cold start recommendations such as content based filtering and deep neural network-based approaches. However, these existing techniques do not make use of any collaborative information between users and items as well as latent features at the same time and thus fail to provide any serendipity which is an important aspect of any recommender system. Moreover, these underlying collaborative signals between users and items are crucial to improving the overall quality of recommender systems and can also be utilized to make cold start recommendations. In this paper, we propose the Generative Collaborative Zero-Shot Recommender System framework (GCZRec) which makes use of both the latent user and item features as well as the underlying collaborative information to generate both warm start and cold start recommendations. We evaluate our framework for news recommendation task given cold start and warm start cases for both users and news items. We also discuss that our model can be plugged in and used as preprocessing to improve the performance of an existing recommender system.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20203 - Telecommunications

Result continuities

  • Project

  • Continuities

    O - Projekt operacniho programu

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    Neuveden

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    11

  • Pages from-to

    16610-16620

  • UT code for WoS article

    001161858700001

  • EID of the result in the Scopus database

    2-s2.0-85183612709