All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Overcoming the Cold-Start Problem in Recommendation Systems with Ontologies and Knowledge Graphs

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00374427" target="_blank" >RIV/68407700:21240/23:00374427 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-42941-5_52" target="_blank" >https://doi.org/10.1007/978-3-031-42941-5_52</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-42941-5_52" target="_blank" >10.1007/978-3-031-42941-5_52</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Overcoming the Cold-Start Problem in Recommendation Systems with Ontologies and Knowledge Graphs

  • Original language description

    Many recommendation systems struggle with the cold-start problem, especially in the early stages of a new application, when there are few active users and limited interactions. Traditional approaches like Collaborative Filtering cannot provide enough recommendations, and text-based methods, while helpful, do not offer sufficient context. This paper argues against the idea that the cold-start phase will eventually disappear and proposes a solution to enhance recommendation performance from the start. We propose using Ontologies and Knowledge Graphs to add a semantic layer to text-based methods and improve the recommendation performance in cold-start scenarios. Our approach uses ontologies to generate a knowledge graph that captures item text attributes’ implicit and explicit characteristics, extending the item profile with similar semantic keywords. We evaluate our method against state-of-the-art text feature extraction techniques and present the results of our experiments.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>ost</sub> - Miscellaneous article in a specialist periodical

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Communications in Computer and Information Science

  • ISSN

    1865-0929

  • e-ISSN

  • Volume of the periodical

    2023

  • Issue of the periodical within the volume

    1850

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    13

  • Pages from-to

    591-603

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85172030358