Overcoming the Cold-Start Problem in Recommendation Systems with Ontologies and Knowledge Graphs
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F23%3A00374427" target="_blank" >RIV/68407700:21240/23:00374427 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-031-42941-5_52" target="_blank" >https://doi.org/10.1007/978-3-031-42941-5_52</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-42941-5_52" target="_blank" >10.1007/978-3-031-42941-5_52</a>
Alternative languages
Result language
angličtina
Original language name
Overcoming the Cold-Start Problem in Recommendation Systems with Ontologies and Knowledge Graphs
Original language description
Many recommendation systems struggle with the cold-start problem, especially in the early stages of a new application, when there are few active users and limited interactions. Traditional approaches like Collaborative Filtering cannot provide enough recommendations, and text-based methods, while helpful, do not offer sufficient context. This paper argues against the idea that the cold-start phase will eventually disappear and proposes a solution to enhance recommendation performance from the start. We propose using Ontologies and Knowledge Graphs to add a semantic layer to text-based methods and improve the recommendation performance in cold-start scenarios. Our approach uses ontologies to generate a knowledge graph that captures item text attributes’ implicit and explicit characteristics, extending the item profile with similar semantic keywords. We evaluate our method against state-of-the-art text feature extraction techniques and present the results of our experiments.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
New Trends in Database and Information Systems
ISBN
978-3-031-42940-8
ISSN
1865-0929
e-ISSN
1865-0937
Number of pages
13
Pages from-to
591-603
Publisher name
Springer
Place of publication
Cham
Event location
Barcelona
Event date
Sep 4, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001351054200052